H2O MLI Resources
This repository by H2O.ai contains useful resources and notebooks that showcase well-known machine learning interpretability techniques. The examples use the h2o Python package with their own estimators (e.g. their own fork of XGBoost), but all code is open-source and the examples are still illustrative of the interpretability techniques. These case studies that also deal with practical coding issues and preprocessing steps, e.g. that LIME can be unstable when there are strong correlations between input variables.
Read more...